19 Octobre – Soutenance de thèse - Illia Thiele

14 h30 Amphithéâtre - Bât B18 Université de Bordeaux (Campus de Talence)

Étude théorique de la génération terahertz dans les microplasmas induits par laser.

Nous étudions la génération de rayonnement TeraHertz (THz) dans des microplasmas produits par des lasers femtosecondes. Cette technique est prometteuse pour créer efficacement des sources THz compactes et étendue spectralement (0.3-30 THz), qui intéressent de nombreuses applications, comme l’identification spectroscopique de substances dangereuses ou encore
l’imagerie en biologie et médecine. Contrairement aux sources conventionnelles, comme les interrupteurs photo-conducteur, les sources THz basées sur des plasmas ne sont pas limitées par la tenue au flux et couvrent l’ensemble du spectre THz. Afin de modéliser des microplasmas générés par des faisceaux laser fortement focalisés, nous présentons un nouvel algorithme qui permet d’injecter tout type de laser dans des codes électromagnétiques. Nous dérivons aussi un modèle compatible avec les équations de Maxwell qui inclut les deux mécanismes générateurs de THz: le courant d’ionisation (IC) et le mécanisme “Transition-Cherenkov” (TC). Ce dernier mécanisme domine la production de THz pour des lasers à plusieurs cycles optiques, où l’émission est produite par les courants d’électron longitudinaux. Dans le cas des microplasmas où un champ électrostatique externe est ajouté, le taux de conversion énergétique laser/THz peut être augmenté de deux ordres de grandeur via le mécanisme IC lorsque le champs statique ou la pression du gaz sont accrus. De plus, les simulations 3D montrent que pour un faisceau laser à deux couleurs et dans des conditions optimales de focalisation, une énergie laser de 10 micro-Joule est suffisante pour atteindre des taux de conversion bien au-dessus de 10^-4. Dans ce cas, la nature transverse du courant IC est cruciale pour accroitre l’efficacité avec la longueur du plasma. En considérant un faisceau laser à deux couleurs de forme elliptique, nous proposons de contrôler les spectres d’émission en exploitant les effets plasmoniques résonants.

Localisation de l’événement