30 Mars – Soutenance de thèse - Julien Moreau

14 h Amphi 1 - bâtiment A9 (Université de Bordeaux - campus de Talence)

Interaction d’une impulsion laser intense avec un plasma sous dense dans le régime relativiste.

De part ses nombreuses applications scientifiques et sociétales comme la radiographie protonique ou encore la protonthérapie, l'accélération d'ions par laser suscite un grand intérêt. Cette thèse s'inscrit dans ce cadre et présente une étude de l'interaction d'une impulsion laser d'intensité relativiste avec un plasma de densité modérée. Dans ce régime, le plasma est transparent à l'onde laser et les électrons oscillent à des vitesses relativistes dans le champ de l'onde incidente. Ces conditions sont favorables à un transfert efficace de l'énergie laser vers le plasma, et donc sont intéressantes pour l'accélération d'ions par laser. Ce régime permet également la création de solitons électromagnétiques et acoustiques dont les mécanismes de formation et les propriétés nécessitent une meilleur compréhension. Nous réalisons une étude détaillée de simulations Particle-In-Cell (réalisées avec le code Ocean) de l'interaction d'une impulsion laser intense avec un plasma sous dense. Nous montrons que la diffusion Raman stimulée (SRS) dans le régime relativiste est le principal processus responsable de l'absorption de l'énergie laser par le plasma et qu'il est, en outre, très efficace puisqu'il permet de transférer près de 70 % de l'énergie de l'impulsion laser aux électrons. Cette instabilité apparaît dans des plasmas dont la densité est nettement supérieure à la densité quart-critique du fait de la diminution de la fréquence plasma électronique et se développe sur des temps très courts. Il permet ainsi un chauffage homogène des électrons tout le long de la propagation de l'impulsion laser à travers le plasma. Ces électrons participent à la détente du plasma, et créent sur ses bords raids un champ électrostatique permettant l'accélération des ions. Ces derniers gagnent 30 % de l'énergie laser initiale. Nous avons aussi développé un modèle simple qui permet de prédire et donc d'optimiser le taux de rétro-diffusion du plasma du fait du développement de l'instabilité SRS. Nous nous intéressons également à la séquence des processus permettant la formation des cavités électromagnétiques. Cette analyse souligne le rôle joué par l'instabilité modulationnelle ou de Benjamin-Feir sur le front de l'impulsion laser qui est divisée en un train de plusieurs solitons électromagnétiques. À l'aide d'une étude détaillée, nous montrons que ces solitons excitent des ondes plasmas dans leur sillage en se propageant dans le plasma, perdent de l'énergie et finissent par être piégés. Ils forment également des dépressions (cavités) des densités électroniques et ioniques du plasma. Ces cavités sont des pièges pour les champs électromagnétiques rayonnés par le plasma (par exemple du fait de l'instabilité SRS) et survivent grâce à un équilibre entre la pression de radiation des champs piégés et les pressions cinétiques électroniques à leurs bords. Ces cavités absorbent une part importante de l'énergie laser mais elles n'en conservent qu'une partie sous forme d'énergie électromagnétique piégée. Le reste de l'énergie permet l'expansion de la cavité, la génération de solitons acoustiques supersoniques et l'accélération de particules.

Localisation de l’événement