08 Décembre – Soutenance de thèse - Sara Akodad

10 h Amphi Jean-Paul Dom - laboratoire IMS (Université de Bordeaux)

Méthodes d'ensemble sur l'espace des matrices de covariance : application à la classification de scènes de télédétection et de séries temporelles multivariées.

Devant le succès grandissant des statistiques du second ordre dans les problèmes de classification, les travaux de cette thèse se sont orientés vers le développement de méthodes d’apprentissage sur variétés. En effet, les matrices de covariance sont des matrices symétriques définies positives qui vivent dans un espace non Euclidien. Il est donc nécessaire de réadapter les outils classiques de la géométrie Euclidienne pour manipuler ce type de données. Pour ce faire, nous avons proposé d’exploiter la métrique log-Euclidienne. Celle-ci permet de projeter l’ensemble des matrices de covariance sur un plan tangent à la variété défini à un point de référence, classiquement choisi égal à la matrice identité, suivi d’une étape de vectorisation pour obtenir la représentation log-Euclidienne. Sur ce plan tangent, il est possible de définir des modèles paramétriques Gaussien ainsi que des modèles de mélange de Gaussiennes. Néanmoins, cette projection sur un unique plan tangent peut induire des distorsions. Afin de limiter cela, nous avons proposé un modèle de GMM composé de plusieurs plans tangents, où les points de référence sont définis par les centres de chaque cluster.
Au vu de la réussite remportée par les réseaux de neurones, en particulier les réseaux de neurones convolutifs (CNN), nous avons proposé deux approches hybrides d’apprentissage par transfert basées sur la matrice de covariance calculée de façon locale et globale sur les sorties des couches convolutives d’un CNN. D’une part, l’approche locale s’appuie sur les matrices de covariance extraites localement sur les premières couches d’un CNN, qui sont ensuite encodées par les vecteurs de Fisher calculés sur leur représentation log-Euclidienne. Tandis que pour l’approche globale, une seule matrice de covariance est calculée sur les cartes de caractéristiques des couches profondes d’un CNN. De plus, afin de donner une plus grande importance aux objets d’intérêt présents dans les images, nous avons proposé d’utiliser une matrice de covariance pondérée par l’information de saillance. Par ailleurs, afin de tirer profit des aspects local et global, ces deux approches sont par la suite combinées dans une stratégie d’ensemble.
D'autre part, la disponibilité des séries temporelles multivariées a suscité l’intérêt de la communauté de la télédétection et plus généralement du machine learning pour l’élaboration de nouvelles stratégies d'apprentissage pour la classification supervisée, notamment les méthodes basées sur le calcul de distance point à point entre les séries. Par ailleurs, deux séries appartenant à la même classe peuvent évoluer de façons différentes, ce qui peut induire des distorsions temporelles (translation, compression, dilatation, etc.). Pour s’affranchir de cela, le « warping » permet d’aligner les séries temporelles. Afin d’étendre cette approche pour des séries temporelles de matrices de covariance, tout en assurant l’invariance à la reparamétrisation des séries, nous nous sommes intéressés à la représentation TSRVF. Dans le même contexte, plusieurs méthodes d’ensemble ont été proposées dans la littérature, notamment le TCK, qui repose sur le calcul de similarité afin de classifier les séries temporelles.  Nous avons proposé d’étendre cette stratégie aux matrices de covariance en introduisant l’approche SO-TCK qui s’appuie sur la représentation log-Euclidienne de ces matrices.
Finalement, le dernier axe de cette thèse concerne la modélisation de trajectoires temporelles des signaux mesurés par les capteurs radar (Sentinel 1) et optique (Sentinel 2). En particulier, nous nous sommes intéressés au problème sylvosanitaire de la maladie de l’encre du châtaignier sur la forêt de Montmorency. Pour cela, nous avons développé des modèles de classification et de régression afin de prédire une note d’état sanitaire à partir de la matrice de covariance calculée sur les attributs radiométriques multitemporels.

Localisation de l’événement