18 Décembre – Soutenance de thèse - Valentin Serey

14 h Amphi Jean-Paul Dom - Laboratoire IMS / bâtiment A31 (campus de Talence)

Sélectivité modale d'ondes ultrasonores dans des guides d'ondes de section finie à l'aide d'éléments piézoélectriques intégrés pour le SHM.

Les systèmes SHM (Structural Health Monitoring) basés sur la propagation d'ondes ultrasonores guidées sont utilisés pour des structures de grandes dimensions, par exemple dans les secteurs de l'aéronautique ou du génie civil. Les ondes de Lamb ou SH sont généralement employées car elles se propagent sur de longues distances dans des structures planes tout en sondant l'épaisseur des pièces. Cependant, des modes moins conventionnels se propagent dans les guides d'ondes de section droite finie, tels que les barreaux, les rails ou les tuyaux. Le nombre de modes peut être très élevé dans ce type de guide, et il est important de bien sélectionner un mode particulier. Les méthodes actuelles de sélectivité modale, basées sur l'emploi de plusieurs émetteurs, considèrent habituellement des éléments PZT identiques (même sensibilité, même réponse en fréquence...) et ne prennent pas en compte les conditions réelles de montage et leurs éventuelles imperfections (couplage variable entre traducteurs, mauvais alignement, différence de réponse de l'électronique...). Ce travail présente une méthodologie générale pour la sélectivité modale dans des guides à section droite finie, à l'aide de plusieurs éléments piézoélectriques disposés à leur surface. Cette sélectivité est basée sur la mesure expérimentale préalable, à l'aide d'un vibromètre laser 3D, des amplitudes des modes générés par chaque élément excité individuellement. Une procédure d'optimisation permet d'inverser le problème afin de maximiser l'amplitude du mode désiré, alors obtenue en excitant simultanément tous les émetteurs. Le problème à inverser requiert la connaissance des courbes de dispersion ainsi que des déformées modales des modes, obtenues en utilisant la méthode SAFE 2D. La méthodologie est testée à travers des simulations numériques et des mesures expérimentales sur un barreau d'aluminium de section rectangulaire instrumenté avec huit éléments PZT à sa surface. L'efficacité de la méthode pour générer différents modes purs, mais aussi pour détecter et localiser des défauts calibrés, est démontrée sur le barreau d'aluminium. Son fort potentiel pour des applications de SHM de structures plus complexes est étudié, tels qu'un rail ou un assemblage collé de matériaux composites.

Localisation de l’événement