09 Juillet – Soutenance de thèse - Nolwenn Monot

09 h Amphi Jean-Paul Dom - IMS (Talence campus)

From driving assistance systems to automated and connected driving.

This thesis is about the design of driving assistance systems for level 3 urban automated driving. Because of a more complex of the environment and a larger set of possible trajectories, the algorithms of highway automated driving are not adapted to urban environment. This thesis objective is to provide methods and algorithms to enable the vehicle to perform automated driving in urban scenarios, focusing on the vehicle lateral guidance and on the path planning. The proposed solutions operate in real-time on board of the automated vehicle prototypes. The contribution of this thesis is as theoretical as practical.
After a synthesis of the driving assistance systems available on current cars and a presentation of the prototypes used for the validation of the algorithms developed in the thesis, a complete analysis of the vehicle lateral dynamics is carried out in time and frequency domains. This analysis enables the design of observers of the lateral dynamics in order not only to estimate signals required for the lateral guidance functions but also to increase reliability of available measurements. Based on the conclusions from the analysis of lateral dynamic, a multi-controller solution has been proposed. It enables the computation of a steering wheel input to follow a trajectory at any longitudinal speed. The solution is validated in simulation and on real road traffic for lane change scenarios. Another contribution consist in an analysis on the other vehicles of the environment is conducted in order to identify their behaviors and which maneuver there are performing. This analysis is essential for the path planning function developed in the thesis. This method, based on the A* algorithm and extended to respect geometric and dynamic constraints, firstly focuses on static environment such as a parking lot. Waypoints are added to the method in order to compute trajectories compatible with traffic regulation and improve the computation time. The method is then adapted for dynamic environment where, in the end, the vehicle is able to perform overtaking manoeuvers in a complex environment.

Event localization