30 Mars – Thesis defense - Aymen Ben Amor

14 h Videoconference

Experimental investigations of thermal and electronic transport in heterostructured 3C/2H nanowires.

This research project presents an experimental exploration of thermal, electrical and thermoelectric properties of 3C/2H heterostructured Si and Ge nanowires. These studied nanowires are made by the Center for Nanosciences and Nanotechnologies of the University of Paris-Saclay, thanks to an original method which allows the creation of phase transformations in these nanowires. This results in a 3C/2H heterostructures along the nanowires with abrupt interfaces, giving hope for a significant reduction in their thermal conductivity without significantly altering their electronic properties. First, we showed the strong diameter dependence on thermal transport in such heterostructured nanowires. On the other hand, the annealing temperature during the phase transformation, which influences the size and the number of 2H domains, can constitute an effective parameter for reducing thermal conductivity. This study constitutes the first experimental evidence of reduced thermal conductivity in such types of nanowires. Then, with the aim of evaluation the electrical and thermoelectric properties of nanowires, an original prototype was developed during this thesis. This prototype allows simultaneous and real-time imaging of thermal and electrical conductivities and the Seebeck coefficient at the nanometric scale.

Event localization