18 Décembre – Thesis defense - Hernando Magallanes Gonzalez

10 h Amphi F - building A29 (Talence campus)

Mechanical effects of light in presence of optical spin-orbit interaction.

Interactions between light and matter cause optomechanical phenomena, where a distinctive feature of light-matter interaction, namely, the spin-orbit interaction of light, takes place within an emerging research area dedicated to the study of optomechanical effects in the presence of the interplay between polarization and spatial degrees of freedom of light. In particular, this work aims to directly observe the manifestation of (i) lateral forces and (ii) left-handed torques, which are counterintuitive optomechanical effects, by using inhomogeneous and anisotropic media as a critical ingredient for the manufacture of spin-orbit optical elements. Hence, we report on their direct experimental observations attempts, starting from the preliminary results obtained in our group before this work, and then present our new proposals and further generalization to the case of lateral forces. Consequently, we report on a millimeter-scale direct observation of optical spin-dependent lateral forces and left-handed torques with a full study. From the analysis of both phenomena, it turns out that their speed can be increased by reducing the spin-orbit optical elements inertia or size, making the phenomena relevant at microscopic-scale and interesting for technological applications. Thus, we account for our experimental journey chronologically, to observe the left-handed torque at micrometer-scale with samples that correspond to miniaturized versions of previous ones. Since the last results were inconclusive, we finish by proposing new strategies of manipulation of such micro-elements with promising implementation.

Event localization