23 Octobre – Thesis defense - Marine Chorel

14 h Amphi - Institut Lasers et Plasmas (Le Barp)

Study of high damage threshold optical coatings used in environment with very low hygrometry for fusion class laser system.

The chirped pulse amplification demonstrated in 1985 allowed the development of petawatt class laser such as Petal (Petawatt Aquitaine Laser). The increase of power of those facilities is limited by the resistance to laser-induced damage of the optical components placed after the compression stage. The aim of this thesis is to improve the laser-induced damage threshold of those components which are multilayer dielectric mirrors. Three paths of improvement are considered the change of design (number of layer, thicknesses), of materials and/or deposition process. A numerical study allows evaluating the potential improvement brought by two of those paths. This led to the development of a design optimization algorithm that required the prior characterization materials. Consequently, various materials deposited as single layers were laser damage tested and optically characterized to evaluate the adequacy of the materials with the deposition process. The results show a wide discrepancy that cannot be explained by the laws exposed in the literature. However, a good correlation was found between the intrinsic laser-induced damage thresholds in the infrared with the absorption in the ultraviolet confirming the influence of the multiphoton absorption in the laser-induced damage mechanisms. Finally, those experimental results combined with the optimization algorithm allowed the development of mirror samples that exhibit laser-induced damage threshold 73% higher than one of classical mirrors.

Event localization