14 Septembre – Thesis defense - Roberto Mostallino - Baptiste Cadalen

09 h30 Amphi Jean-Paul Dom (IMS - Building A31) - Talence campus

Modeling and robust control of a tethered kite in dynamic flight.

The need in reducing the CO_2 emissions and the increase of oil prices affect all transportation industries and especially the maritime industry. This has led to the search for more energy-saving ship propulsion systems. Taking advantage of wind energy by using tethered wings, or kites, as an alternative propulsion source can be an effective solution. The "beyond the sea" project, led by Yves Parlier, aims to provide ships an alternative green energy source. In most wind conditions, compared to a static flight, a dynamic motion of a tethered wing with an eight-shaped pattern can provide sufficient force through traction to tow a ship. Therefore, the main objective of this study is the modeling and robust control of a tethered kite in dynamic flight. To this end, a point mass model is first used to describe the kite dynamics. The model parameters are estimated from experimental data and the aerodynamic coefficients are identified using data from a quasi-static flight. Open loop simulations are conducted to verify the kite behavior and the overall coherence of the model. To ensure a dynamic flight, an eight-shaped trajectory is defined within the wind window. Its position, size, orientation and direction are all adjustable parameters. A path-following strategy is then developed in order to design a robust control law including the kite model. This allows the system to be used in different trajectories with a wide range of wind speeds. Closed-loop simulations are presented to show the efficiency of the path-following algorithm, and the various theoretical performances obtained shows the efficiency of a kite dedicated to vessels auxiliary propulsion.

Event localization